Chromatic Polynomials of Simplicial Complexes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromatic Polynomials of Simplicial Complexes

In this note we consider s-chromatic polynomials for finite simplicial complexes. When s = 1, the 1-chromatic polynomial is just the usual graph chromatic polynomial of the 1-skeleton. In general, the s-chromatic polynomial depends on the s-skeleton and its value at r is the number of (r, s)-colorings of the simplicial complex.

متن کامل

Chromatic polynomials of some nanostars

Let G be a simple graph and (G,) denotes the number of proper vertex colourings of G with at most  colours, which is for a fixed graph G , a polynomial in  , which is called the chromatic polynomial of G . Using the chromatic polynomial of some specific graphs, we obtain the chromatic polynomials of some nanostars.

متن کامل

Chromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs

In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...

متن کامل

Maximal Fillings of Moon Polyominoes, Simplicial Complexes, and Schubert Polynomials

We exhibit a canonical connection between maximal (0, 1)-fillings of a moon polyomino avoiding north-east chains of a given length and reduced pipe dreams of a certain permutation. Following this approach we show that the simplicial complex of such maximal fillings is a vertex-decomposable, and thus shellable, sphere. In particular, this implies a positivity result for Schubert polynomials. Mor...

متن کامل

chromatic polynomials of some nanostars

let g be a simple graph and (g,) denotes the number of proper vertex colourings of gwith at most  colours, which is for a fixed graph g , a polynomial in  , which is called thechromatic polynomial of g . using the chromatic polynomial of some specific graphs, weobtain the chromatic polynomials of some nanostars.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2015

ISSN: 0911-0119,1435-5914

DOI: 10.1007/s00373-015-1578-6